Prerequisites: Algebraic General Topology. Let $ f $ is a multifuncoid on an indexed family of multifuncoids $ \mathsf{FCD}(\mathfrak{A}_i) $ of forms $ \mathfrak{A}_{i\in n} $. Let's denote $ \mathsf{dFCD}(\mathfrak{A}_i) $ the sets of discrete multfuncoids of these forms. The displacement of $ f $ is the funcoid

$ \Lambda \left( \left[ f \right] \cap \prod_{\lambda i \in \operatorname{dom} f} \mathrm{d} \mathsf{\operatorname{FCD}} \left( \operatorname{Src} f_i ; \operatorname{Src} g_i \right) \right) . $

TODO: Prove that it is correctly defined.

We will define displaced product of a family $ f $ of funcoids by the formula: $ \prod^{\left( \operatorname{DP} \right)} f = \operatorname{DP} \left( \prod^{\left( C \right)} f \right) $.